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Abstract Solid-state NMR (ssNMR) provides increasing

possibilities to study structure and dynamics of biomolec-

ular systems. Our group has been interested in developing

ssNMR-based approaches that are applicable to biomole-

cules of increasing molecular size and complexity without

the need of specific isotope-labelling. Methodological as-

pects ranging from spectral assignments to the indirect

detection of proton–proton contacts in multi-dimensional

ssNMR are discussed and applied to (membrane) protein

complexes.
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Introduction

Solid-state NMR (ssNMR) has successfully been utilized in

a biological context for more than three decades (see, e.g.,

Cross and Opella 1983; Griffin 1981, 1998; McDowell and

Schaefer 1996; Seelig 1977; Torchia 1984). In the last

years, improved instrumentation including high magnetic

fields and the development of molecular biology tools for

the production of sufficient quantities of isotope-labeled

samples have opened up new research areas for biological

ssNMR. In parallel, many groups have made important

contributions to the rapidly increasing arsenal of ssNMR

techniques to study biomolecular systems and the

interested reader is referred to series of reviews (Baldus

2006; de Groot 2000; Griffin 1998; Hong 2006a; McDer-

mott 2004; Opella and Marassi 2004; Tycko 2006).

In this contribution I will review efforts of our group to

develop and use high-resolution ssNMR methods in a

biophysical context. To a large extent, our motivation has

been to extend the current limits of ssNMR studies in terms

of tractable molecular size and complexity. In particular,

we have been interested in adapting ssNMR methods to

experimental conditions that maintain protein functionality

(for example when embedded in membranes) or provide

access to structural and dynamical parameters that may be

important in the cellular context. Such conditions relate to

dense molecular systems ranging from protein aggregates

to membrane proteins (see, e.g., Takamori et al. 2006) that

are intrinsically non-crystalline and can be difficult to study

by solution-state NMR methods. On the other hand, such

attempts would have not been possible without experi-

ments involving crystalline model peptides and proteins.

Apart from their biological relevance, these systems have

provided an ideal methodological test case for many

ssNMR approaches available today. In this contribution, I

will first treat the methodological aspects that have played

a major role in our work in the last years. Many of these

methods are intimately linked to the applications discussed

in the second part of this review.

Methods

Resonance assignments

Working with multiply—or fully labeled molecules usually

necessitates multi-dimensional correlation spectroscopy.

Early examples under Magic Angle Spinning (MAS

(Andrew et al. 1958)) conditions involved the use of
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dipolar recoupling methods, applied to uniformly labeled

molecules. An example is shown in Fig. 1, where

U[13C,15N]Arg-HCl was used as a molecule to study zero

and double-quantum mixing under MAS conditions (Bal-

dus et al. 1994). Note that, at the time of publication, Arg-

HCl and related amino acids could still be considered as

biological macromolecules for biological (two-dimen-

sional) ssNMR applications. Some time later, the same

molecule was used to demonstrate chemical-shift selective

(15N,13C) polarization transfer (SPECIFIC-CP (Baldus

et al. 1998), Fig. 1). Compared to conventional broad-band

Hartmann–Hahn transfers (Hartmann and Hahn 1962;

Pines et al. 1973), cross polarization is here established

using a set of optimized, relatively weak r.f. fields that

make an experimental separation of intra-residue Ni M Cai

and inter-residue Ni M COi–1 transfer under optimized

radio frequency (r.f.) conditions possible.

While resonance assignment methods in the solution

state make extensive use of the J-coupling to direct

polarization along the polypeptide chain (Ikura et al.

1990a, b), ssNMR mixing schemes can employ in principle

both through-bond or through-space transfer mechanisms

to achieve sequential resonance assignments under MAS

conditions. Amino acid types and intra-residue interactions

are, perhaps, most easily obtained from (13C,13C) broad-

band correlation spectra. Again, such experiments can in-

volve through-bond or through-space interactions. For the

latter, (13C,13C) interactions may be actively recoupled or

they may rely upon (13C,13C) transfer facilitated by mul-

tiple-(1H)-spin effects. Intraresidue correlations are also

often easily identified by inspection of double-quantum

single-quantum (2Q,1Q) spectra.

As shown in Fig. 2, intra and inter-residue transfer

involving one-bond transfers can be established using

Ni M Cai (a) and Ni M COi–1 transfers (b), respectively.

Because spectral resolution among CO resonances is

usually limited, an additional homonuclear transfer step

(i.e., COi–1 fi Cai–1) is often mandatory. This second

transfer step is also often implemented following transfer

to Cai in order to transfer magnetization along the amino

acid side chain. The combination of N-Cai-Cbi (known as

NCACB) and N-COi–1-Cai–1 (NCOCA, b) transfer

schemes then can provide the basis for sequential

assignments. At ultra-high magnetic fields, the final

mixing step in these sequences is required over a chem-

ical shift difference disoðCOi�1Þ � disoðC a i�1Þ of

120 ppm, corresponding to a frequency difference ranging

from 18 kHz (600 MHz 1H frequency) to 27 kHz

(900 MHz). This transfer step hence necessitates a very

efficient suppression of chemical shift terms during a

broad-band polarization transfer or can rely on polariza-

tion transfer schemes such as RR (Raleigh et al. 1988),

RRTR (Takegoshi et al. 1995) or RFDR (Bennett et al.

1992) that operate most efficiently at a rotational reso-

nance condition. This mechanism also provides a route to

monitor sequential correlations in a (13C,13C) correlation

experiment (Seidel et al. 2004). For this purpose, the

protein sample is spun at an MAS frequency near to, but

not exactly at, half the isotropic chemical shift difference

between the CO and Ca resonances. This spinning fre-

quency does not give rise to highly undesirable rotational

resonance line broadening but does cause magnetization

transfer between both intra- and interresidue CO-Ca pairs

(Fig. 2c). Consequently, in a (13C,13C) correlation spec-

trum with a long (>100 ms) mixing time, intra and inter-

residue cross peaks are seen. Such spectra recorded under

‘‘weak coupling’’ conditions lead to (13C,13C) spectra that

can assist NC-type resonance assignment experiments.

Finally, as illustrated in Fig. 2d, sequential resonance

assignments can also be obtained from proton-proton

Fig. 1 Left: Two-dimensional

dipolar recoupling (RIL-ZQT-

type (Baldus et al. 1994))

correlation experiment

performed on U[13C,15N]Arg-

HCl representing an earlier

example of broad-band dipolar

mixing under MAS conditions.

Middle and right: chemical-shift

selective 13C–15N and 15N–13C

transfer under CP conditions

employing r.f. fields comparable

or smaller than the MAS rate

(SPECIFIC-CP (Baldus et al.

1998))
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(Lange et al. 2002) or 1H-13C mediated (Etzkorn et al.

2004) correlation spectroscopy (vide infra).

These (and related) hetero- and homonuclear mixing

schemes provide the basic ingredients to obtain sequential

resonance assignments of a polypeptide under MAS con-

ditions. The first attempt to do so was published in this

journal by Ernst and coworkers (Straus et al. 1998).

However, the importance of high magnetic fields and the

effect of sample preparation for 2D ssNMR was quickly

realized for globular proteins including BPTI (McDermott

et al. 2000) or the SH3 domain (Pauli et al. 2000). Com-

bination of these techniques with transfer methods such as

described above then led to nearly complete sequential

resonance assignments for SH3 (Pauli et al. 2001), an-

tamanide (Detken et al. 2001), Crh (Böckmann et al. 2003)

or ubiquitin (Igumenova et al. 2004).

In the meantime, it has become clear that ssNMR studies

are not restricted to microcrystalline proteins but they are

also readily applicable to amyloid fibrils (Ferguson et al.

2006; Heise et al. 2005a; Iwata et al. 2006b; Jaroniec et al.

2004; Petkova et al. 2002b; Ritter et al. 2005), protein

precipitates (Etzkorn et al. 2007a) or membrane proteins

(see, e.g., Egorova-Zachernyuk et al. 2001; Fujiwara et al.

2004; Li et al. 2007). In particular, proteoliposome prep-

arations can give rise to high-resolution ssNMR spectra,

such as shown in Fig. 3 for the 250 aa protein sensory

rhodopsin II (Etzkorn et al. 2007b). Comparison to Fig. 1

underlines the enhanced level of complexity that biological

ssNMR has reached.

As mentioned earlier, dipolar recoupling experiments

provide an important tool in biological solid-state NMR.

Many of these methods require efficient proton decoupling,

a criterion that is increasingly difficult to fulfill at high

MAS rates and/or B0 fields. A simple analysis of the

double-quantum filtering (2QF) efficiency as a function of

the 1H decoupling field (Fig. 4) reveals that the relative

size of 1H/13C r.f. fields and MAS rate is important for

efficient 1H decoupling. As a result, efficient 2QF is pos-

sible without 1H irradiation under appropriate experimental

conditions. This aspect has recently triggered the devel-

opment of r.f. schemes that perform well without r.f. de-

coupling fields (De Paepe et al. 2006; Hughes et al. 2004;

Marin-Montesinos et al. 2005). In addition, a series of

pulse schemes have been developed for applications at high

MAS rates and B0 fields (De Paepe et al. 2006; Ishii 2001;

Verel et al. 1997, 1998) and approaches involving the use

of numerically optimized pulse schemes (Kehlet et al.

2004) are likely to improve the transfer efficiency of each

coherence transfer step in future applications.

Three-dimensional structure determination

The determination of three-dimensional molecular struc-

tures by ssNMR was, for a long time, complicated by

strong dipolar (1H,1H), (13C,13C) and (13C,15N) interac-

tions. Several groups have shown that these difficulties

can be overcome by dilution of the spin network by r.f.

schemes (Jaroniec et al. 2001; Nomura et al. 1999) or by

chemical modification (Castellani et al. 2002; Zech et al.

2005). Although the latter approach is particular well

suited for larger systems where spectral overlap is more

severe, chemical shift-selective transfer can also provide

valuable structural information in larger systems (Son-

nenberg et al. 2004). Significant progress has also been

achieved in using 1H ssNMR spectroscopy in a structural

context (Brown and Spiess 2001; Chevelkov et al. 2006;

Elena and Emsley 2005; Elena et al. 2006; Paulson et al.

2003; Reif et al. 2001). In addition, our group has

investigated the use of proton–proton contacts, detected

indirectly (Lange et al. 2002, 2005) in the context of 3D

structure determination of biosolids and for the investi-

gation of protein interfaces (Etzkorn et al. 2004).

Fig. 2 Examples of magnetization transfer pathways used for

spectral assignment, illustrated for the three-residue stretch VLA.

Solid arrows denote intraresidue transfer, dotted arrows denote

interresidue transfer. (a) NCACB generates intraresidue magnetiza-

tion transfer. (b) NCOCA generates interresidue magnetization

transfer. (c) CACA generates interresidue transfer via weakly coupled

(CO, Ca) spin pairs. (d) NHHC generates both intra- and interresidue

magnetization transfer
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Compared to (13C,13C) or (13C,15N) contacts in proteins,

proton–proton interactions are more abundant and, be-

cause of their peripheral nature, contain a larger fraction

of long-range contacts for the shortest internuclear dis-

tances. Notably, these aspects remain valid if spin dilution

(Hong and Jakes 1999; LeMaster and Kushlan 1996) is

used (Fig. 5). On the other hand, detecting proton–proton

contacts in larger systems comes at a price of low spectral

resolution making the use of indirect spectral encoding

mandatory. In Fig. 6, a series of multidimensional corre-

lation experiments to detect such (1H,1H) or (1H,X)

interactions is depicted. These experiments can be modi-

fied in reference to the detected nucleus and the mixing

unit establishing either 1H,1H or 1H,X transfer. In the last

years, applications ranging from small molecules (de Boer

et al. 2003; Seidel et al. 2005b) to (membrane) proteins

(Ganapathy et al. 2007; Lange et al. 2005, 2006; Seidel

et al. 2005a) and nucleic acids (Riedel et al. 2006) have

been reported.

For example, the determination of the ssNMR structure

of Kaliotoxin (KTX, Fig. 7) supports the validity of the

general concept using (1H,1H) distances and conformation-

dependent chemical shifts to determine 3D polypeptide

structures by ssNMR (Lange et al. 2005). Work in model

systems using a variety of 1H,1H transfer schemes has re-

vealed that the transfer dynamics are often best described

using relaxation theory, even if zero-quantum dipolar

Fig. 3 Sequential assignment of the amino-acid stretch Ser150-

Ser158 in reverse labeled sensory rhodopsin II using spin diffusion

spectra under weak coupling conditions with C,C mixing times of

15 ms (a) and 150 ms (b) (Etzkorn et al. 2007b). N–C correlation

spectra recorded under SPECIFIC transfer conditions (Baldus et al.

1998) are shown in (c) (NCACX) and (d) (NCOCX). Note that the

spectra in (a) and (c) only contain intra-residue transfer; (d) only

contains sequential (Ni–Ci-1) correlations whereas (b) contains intra-

and inter-residue (Ci–Ci±1) crosspeaks. Resonances of each amino

acid of the considered stretch are characterized by a specific color.

Vertical and horizontal lines exemplify a sequential walk within the

considered amino-acid stretch (Etzkorn et al. 2007b)

Fig. 4 The dependence of double-quantum filtering efficiency in U-

[13C]-Gly upon the decoupling field strength applied during the

excitation and reconversion sequences using the rotating-frame

polarization transfer scheme POST-C7 (Hohwy et al. 1998)

76 J Biomol NMR (2007) 39:73–86

123



recoupling methods such as RFDR (Bennett et al. 1992)

are used (Lange et al. 2003). On the other hand, applying

2Q (rotating-frame) mixing units to fully protonated bios-

olids leads to transfer characteristics that have been well

studied for rare-spin (13C,13C) cases. The same observa-

tions, although on a different time scale of the inverse of

the molecular interaction, are valid for dipolar (13C,13C)

mixing where strong coupling effects are usually seen for

dipolar recoupling schemes and a perturbative treatment

can be applied for many schemes based on zero-quantum

transfer. Under the latter conditions, cross correlations

ranging from sequential (13C,13C) transfers (Seidel et al.

2004) to long-range contacts (de Boer et al. 2003; Iwata

et al. 2006b) have been reported for uniformly 13C labeled

compounds.

Structure and dynamics

To date, 3D structures of several crystalline and non-

crystalline compounds (including small organic molecules,

peptides and proteins) have been obtained under MAS

conditions. In a next stage, an investigation of the precision

with which ssNMR-based structural constraints can be

obtained and of the accuracy of the resulting structures is,

similar to the solution state (Spronk et al. 2004), needed.

The determination of reliable structural constraints not only

depends on the relationship between ssNMR signal inten-

sities and molecular structure (see section Three-dimen-

sional structure determination) but it is also influenced by

experimental factors such as the signal-to-noise ratio or

spectral overlap and molecular motion. Recent experi-

mental results show that molecular motion is an important

aspect in biological solid-state NMR, even if microcrys-

talline preparations where lattice contacts can restrict the

motional degrees of freedom are considered. Hence,

experimental approaches that probe mobility on a residue-

specific level become of increasing relevance.

Whenever motion is on the time scale of the inverse of

the anisotropic interaction, such as the quadrupolar and

dipolar interaction or the chemical shielding anisotropy,

the measurement of the residual anisotropic interactions

can be used to define a motion-based scaling parameter. In

a first set of experiments, we applied such a combination of

high-resolution ssNMR methods to a uniformly labeled

version of L-tyrosine-ethylester, TEE. Resonance assign-

ments and structural constraints were obtained from CC

and CHHC data, respectively (Seidel et al. 2005b). Local

motion was then studied by determining the residual one-

bond (1H,13C) (Seidel et al. 2005b) interaction revealing

enhanced molecular motion of the ester tail.

In the presence of faster molecular motion, dipolar-

based transfer methods become inefficient and through-

bond interactions provide, similar to isotopically tumbling

molecules in solution, an alternative means to establish

coherence transfer. In the context of isotope-labeled pro-

teins, an amino acid-specific identification is readily pos-

sible using (1H,13C) INEPT-based (Morris and Freeman

1979) correlation experiments. For a residue-specific

assignment, sequential correlations must be detected either

using sequential (1H,1H) or (15N,13C) correlation methods.

In Fig. 8, the latter techniques are shown and invoke a

combination of INEPT and TOBSY (Baldus and Meier

1996) units facilitating transfer based on scalar couplings

Fig. 5 Statistical analysis of all proton–proton and carbon–carbon

(assuming labeling according to (LeMaster and Kushlan 1996))

distance constraints up to distance d in ubiquitin. The fraction of long-

range distances (residue difference >4) is shown. For the 13C curve,

distances in both [2-13C] glycerol and [1,3-13C]glycerol preparations

were added

Fig. 6 Schematic scheme to record N/CHHC or N/CHC correlations

in 2 or 3 spectral dimensions. See, e.g., (Lange et al. 2002) and

(Seidel et al. 2005b) for further details
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without unwanted interference effects with sample spin-

ning (Andronesi et al. 2005). The experiments have been

applied to both proteoliposomes and fibril protein prepa-

rations (See section Applications) and permit a spectral

separation of protein signals based on local molecular

mobility.

With the ability to separate signal components stemming

from molecular segments with local mobility, the mea-

surement of domain sizes and molecular interfaces be-

comes feasible. The corresponding ssNMR methods were

first developed for biopolymers and polymers (see, e.g.,

Assink 1978; Demco et al. 1995; Edzes and Samulski

1977). In a more biophysical context, the same principles

also apply to select polarization of mobile sample

components such as H2O or lipids in a protein environ-

ment. Polarization transfer to the immobile segments then

first occurs to the liquid-solid interphase and hence

provides the excellent boundary condition to monitor the

solid-phase interior. Firstly, applications focussed on

individual protein segments, probing protein signals in one

spectroscopic dimension (see, e.g., Kumashiro et al. 1998)

or only involving one rare-spin dimension in a 2D ssNMR

experiment (Hong 2006b). More recently, advancements in

spectroscopic sensitivity permit the recording of two-

dimensional correlations experiments (such as shown in

Fig. 9) in reference to a mobile 1H environment. Again,

applications can range from membrane proteins to

biopolymers, possibly involving deuterated proteins

Fig. 7 Left: 2D CHHC

spectrum of U-[13C,15N]-

labeled KTX. Assigned

correlations reflect interresidue

CHHC constraints. Right:

Ribbon diagram of the ten

conformers determined by

ssNMR spectroscopy with the

lowest energy (PDB entry:

1XSW). The conformers were

aligned along the backbone by

using MOLMOL (Koradi et al.

1996) (adapted from (Lange

et al. 2005))

Fig. 8 Double- and triple-

channel pulse sequences for

two- or three-dimensional NMR

experiments to detect mobile

protein segments under MAS

conditions: (a) HCC, (b)

HNCACB or HNCOCACB, (c)

HHC or HHN, and (d) HNHHC.

Unless stated otherwise, narrow

and wide black rectangles

correspond to 90� and 180�
pulses, respectively. Further

information can be obtained

from Andronesi et al. 2005
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(Böckmann et al. 2005; Lesage and Böckmann 2003;

Lesage et al. 2006).

Applications

Amyloid proteins

Since protein fibrils are—unless consisting of short model

peptides (Makin et al. 2005; Nelson et al. 2005)—intrin-

sically non-crystalline and insoluble, ssNMR has emerged

as the method of choice for structural studies on amy-

loid fibrils (Chan et al. 2005; Chimon and Ishii 2005;

Ferguson et al. 2006; Heise et al. 2005a; Iwata et al.

2006a; Jaroniec et al. 2004; Petkova et al. 2002a, 2004,

2005, 2006; Ritter et al. 2005; Shewmaker et al. 2006;

Siemer et al. 2006; Tycko 2004; vanderWel et al. 2006).

In the context of amyloid fibrils, full length constructs

are usually to be preferred because the supramolecular

structure detected by ssNMR may depend on the exact

length of the particular peptide sequence. For this reason,

we have, for example, studied fibril formation using full

length constructs (i.e., 140 aa’s) of a-synuclein related to

Parkinson’s disease. a-synuclein fibrils are the main com-

ponent of protein aggregates associated with the loss of

functionality of dopaminergic neurons in the context of

Parkinson’s disease. The 140 amino acid protein a-synuc-

lein consists of an amphipathic N-terminus, a predomi-

nantly hydrophobic middle, so called NAC (non-Ab
component) region (residues 61–95), and a highly acidic

and proline (P)-rich C terminus (residues 96–140). Upon

aggregation, a large fraction of a-synuclein undergoes a

transition from random-coil structure to the cross-b con-

formation typical for amyloid fibrils (Conway et al. 2000;

Serpell et al. 2000).

SsNMR studies of the full length constructs of a-syn-

uclein are in general complicated by the chain length, the

repetitiveness of amino acid motifs, and the difficulty to

recombinantly produce isotope labeling at specific amino

acid residues. Our spectroscopic analysis (Heise et al.

2005a) hence included the use of 3D correlation experi-

ments, mobility filters such as described above and reverse

isotope labeling schemes (Vuister et al. 1994) that sim-

plified the ssNMR analysis. As a result, we could separate

signal contributions arising from the rigid core of a-syn-

uclein fibrils and resonances reflecting the mobile C-ter-

minus of the fibrils or soluble monomers using T2-filtered

through-space and through-bond correlation methods

(Fig. 10). Note that in both cases high resolution 13C cor-

relation spectra are obtained. The measurements led to the

conclusion that a-synuclein fibrils contain a central region

that is rich in b-strand segments, a highly flexible C ter-

minus, and a disordered N terminus. Variations in solid-

state NMR spectra of different samples were found for the

central b-strand region, suggesting that at least two distinct

fibril nucleation mechanisms exist for the formation of AS

fibrils.

Protein folding

In addition to the structural investigation of mature

protein fibrils or biopolymers, ssNMR also provides a

spectroscopic means to study protein folding in a residue-

specific level or in real time. In a first set of experiments,

we and others (Havlin and Tycko 2005) developed a

strategy to monitor motional amplitudes of intrinsically

disordered polypeptides from 2D ssNMR experiments.

For example, this concept was applied to probe the

residual structure of the C-terminal end of neurotensin

(NT(8–13)) in an aqueous and lipid-bound state. To

characterize the conformational space adopted by this

neuropeptide, we analyzed 2D ssNMR data (i.e., the

correlation of conformation-dependent Ca and Cb chem-

ical shifts) obtained in the frozen state using a combina-

tion of molecular dynamics calculations and DFT-based

methods (Heise et al. 2005b). For this purpose, a library

of random peptide conformations was created. NT(8–13)

structures were then used as input parameters for a

chemical-shift prediction routine (Neal et al. 2003) to

collect backbone angles that are compatible with the

experimental ssNMR data. Although this approach does

not deliver a quantitative analysis of the NT structures in

solution it revealed a general propensity of the peptide to

adopt extended conformations which, on the level of

Fig. 9 Schematic scheme to record (N,C) and (C,C) correlation

spectra after a variable proton T2 filter. Small rectangles reflect non-

selective 90� pulses on protons. Polarization transfer between mobile

protons and the solid interface takes place during the (longitudinal)

mixing time MIX1
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individual residues, is determined by the hydrophobic

character of the side chain. Extensions that further refine

the conformational space, for example by measuring

through-space distances, are possible.

Many folding events take place on the slow time scale.

This aspect has prompted us to explore possibilities to re-

cord time-resolved ssNMR data during protein folding.

Pioneered for applications in soluble molecules (Balbach

et al. 1996), such an approach recently allowed us to record

spectroscopic ‘footprints’ (Etzkorn et al. 2007a) describing

the refolding of a precipitated protein due to a slight

temperature increase. Initially, the protein adopts a con-

formation giving rise to a defined set of 2D ssNMR cor-

relations. Conformational stability is then perturbed by

changes in temperature (such as in Etzkorn et al. 2007a) or

possibly by other factors and leads to a slow structural

rearrangement that is recorded in a standard 2D experi-

ment. Apart from phase modulations, chemical shift

changes then encode structural and kinetic aspects of the

refolding event. These results can then be compared to the

final state characterized by another set of 2D ssNMR cor-

relations after the structural transition. This principle idea

was first tested for Crh, a protein which has served as a test

case for many methodological aspects in ssNMR (see, e.g.,

Böckmann 2006). Our analysis (Etzkorn et al. 2007a)

showed that our domain-swapped protein does not refold

into an aggregated structure in which the domain swapped

interface is maintained and also demonstrated that high-

resolution ssNMR spectra can be obtained from precipi-

tated proteins.

Ligand-membrane protein interactions

SsNMR has been applied to study ligand binding to

membrane proteins for almost two decades. While earlier

studies involved the determination of individual structural

constraints from a specifically labeled biomolecule (see,

e.g., (Creuzet et al. 1991; Watts 1999, 2005), progress in

ssNMR methods now also provides increasing possibilities

to use multiply or uniformly labeled samples (Creemers

et al. 2002; Krabben et al. 2004; Patel et al. 2004). These

advancements were crucial for our study of neurotensin

bound to its G-protein coupled receptor (Luca et al. 2003).

Studying the bioactive conformation of NT without signal

overlap from excess (unbound) NT required the measure-

ment of lg quantities of the peptide. Correspondingly, one-

dimensional CP spectra of the complex were dominated by

natural abundance lipid and protein receptor signals

(Fig. 11). Notably, not only the full length peptide, but also

the C-terminal part of neurotensin, NT(8–13), has been

found to interact with NTS-1 with high affinity (see for

example refs. Goedert 1989; Tanaka et al. 1990). Because

of the limited sensitivity, our study focussed on the

determination of conformation-dependent chemical shifts

of the bioactive form of NT, i.e., NT(8–13). Nevertheless,

this information was sufficient to build a low-resolution

structural model of the peptide backbone (Fig. 11) in

complex with the receptor and has lead to the synthesis of

designed peptides that mimic the ssNMR-derived torsion

angles (Luca et al. 2005). In addition, our ssNMR study

may provide the basis for additional experiments

Fig. 10 Characterization of

a-synuclein fibrils by ssNMR.

The core region (residues

38–95) is rich in b-strand

segments (as measured by

chemical shift and (1H,1H)

distance information) and

dominates dipolar correlation

spectra (left). Correlation

experiments are shown for short

(red) and long (blue) mixing

times (left box). Right:

Mobility-filtered through-space

(blue) and through-bond (red)

experiments contain, on the

other hand, signal sets that are

compatible with a mobile

C-terminus and residual

monomers in the sample,

respectively (Heise et al. 2005a)
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determining distances or side-chain orientations of selec-

tively-labeled peptide variants.

If sufficient protein quantities are available, it is possible

to determine entire ligand structures, as we have demon-

strated for the scorpion toxin Kaliotoxin in complex with a

chimeric (KcsA-Kv1.3) ion channel (Lange et al. 2006).

Kaliotoxin (KTX) is a 38-residue peptide found in the

venom of the scorpion Androctonus mauretanicus maure-

tanicus. Binding of KTX (Legros et al. 2000, 2002) and

KTX mutants to these K+ channels is similar to the inter-

action of KTX with the Shaker-related T-lymphocyte

Kv1.3 channel. Because KcsA-Kv1.3 protein can be ex-

pressed in Escherichia coli, this system is amendable to

[13C,15N] isotope labelling. Compared to the KcsA channel

first identified in the gram-positive bacterium Streptomyces

lividans (Schrempf et al. 1995), KcsA-Kv1.3 differs by 11

amino acids, predominantly found in the pore region of the

channel (Legros et al. 2000, 2002). For the KcsA system,

X-ray structures exist for the transmembrane and extra-

cellular regions (Doyle et al. 1998; Zhou et al. 2001a)

(PDB entries: 1BL8, 1J95), for variable potassium con-

centrations (Zhou et al. 2001b) (PDB: 1K4C, 1K4D) and in

the presence of Rb, Tl (Zhou and MacKinnon 2003) (PDB:

1R3J, 1R3J) and TEA (Lenaeus et al. 2005) (PDB: 2BOB,

2BOC). Structural information on the cytoplasmic domains

was obtained by combining X-ray results with EPR data on

spin-labeled variants of the full length KcsA channel

(Cortes et al. 2001) (PDB: 1F6G).

After determination of the free KTX structure, we com-

pared ssNMR spectra of proteoliposomes containing the free

channel and the toxin - ion channel complex to study the

structural rearrangements that are associated with complex

formation in a detailed manner. Since the chimeric channel is

amendable to isotope labelling, binding was investigated

both on the ligand and the channel side. 2D ssNMR of the

free, membrane-embedded channel (using Asolectin for

reconstitution) were largely compatible with predictions

using the available X-ray structure as a reference. In addi-

tion, the distinct backbone structure around the active site of

the channel facilitated sequential resonance assignments that

readily lead to the identification of residue-specific interac-

tions. The corresponding chemical-shift mapping that de-

scribes the effect of toxin binding on the level of the channel

backbone is shown in Fig. 12 using a model structure of the

full length KcsA-Kv1.3 channel. Amino acids perturbed by

binding are indicated and include side chains. These obser-

vations strongly suggested that complex formation involves

structural rearrangements of the toxin and the selectivity

filter of the channel. The latter view not only is in line with

structural variations seen upon changes in potassium con-

centration (Zhou et al. 2001b) and in the presence of Rb, Tl

(Zhou and MacKinnon 2003) and TEA (Lenaeus et al. 2005)

Fig. 11 One-dimensional 13C

ramped CP MAS spectra (side

chain resonances) of 0.1 mg of

[13C,15N]-NT(8–13) in

detergent-containing buffer (a)

and in complex with the

receptor (lipid-reconstituted,

(b), respectively. The sample

temperature was maintained at

–80�C (a) and –85�C (b),

respectively. In both

experiments, 1,024 scans were

taken utilizing proton

decoupling fields of approx.

110 kHz. (c) Backbone ssNMR

model of NT(8–13) as

determined by Luca et al.

(2003) and putative binding site

of NT(8–13) involving loop 3

according to (Barroso et al.

2000)
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but also nicely fits to recent X-ray data obtained on KcsA

mutants that exhibit distinct structural variations around the

selectivity filter (Cordero-Morales et al. 2006). Taking into

account molecular plasticity may also be important in future

MD-based studies of ligand–ion channel interactions (Yi

et al. 2007).

Membrane proteins

Alterations in molecular structure and dynamics are not

restricted to ligand–protein interactions but they represent a

general theme of molecular recognition. In membranes,

such complexes are readily formed, possibly assisted by

protein–membrane interactions. Such interactions are often

difficult to capture by X-ray structures, especially if

molecular dynamics and/or crystal packing effects are

present. As a case study, we have been investigating

structure and dynamics of sensory rhodopsin II from Na-

tronomonas pharaonis (NpSRII), a seven-helix (A–G)

membrane protein containing retinal as cofactor (Klare

et al. 2004) in lipid bilayers. NpSRII and its cognate

transducer (NpHtrII) have been analyzed both in the lipid-

reconstituted state and as a solubilized probe. EPR

(Wegener et al. 2001) and X-ray crystallography (Gordeliy

et al. 2002; Moukhametzianov et al. 2006) suggest that the

NpSRII/NpHtrII complex is formed in a 2:2 ratio in

membranes. Notably, these two–two complexes are not

seen in detergents (Klare et al. 2006).

Using a combination of ssNMR methods that separate

spectroscopic signals of mobile, static and water–exposed

protein segments we monitored structure and topology of

this seven-helix receptor in native membranes. To reduce

spectral overlap, we again made use of a reversely labeled

sample in which signal from residues indicated in Fig. 13

in dark grey do not contribute to the ssNMR spectrum. Our

study led to resonance assignments in the rigid interior

(blue) and in dynamic loop (and C-terminal) regions (red)

of the protein. Moreover, H2O-edited 2D data suggest that

amino acids indicated in green are located close to the

membrane surface. As expected, most signals appearing in

Fig. 12 Amino acids (indicated in black) influenced by KTX binding

according to 2D ssNMR data (Lange et al. 2006), mapped on a

structural model of two subunits of the full length channel in a model

membrane environment

Fig. 13 Summary of sensory rhodopsin II protein residues seen in 2D

ssNMR to be static (left), dynamic (middle) or solvent exposed (right)

in lipid bilayers. Dark grey residues were not labeled in the reverse-

labeled sample used in (Etzkorn et al. 2007b). As a result, amino

acids indicated in light grey cannot be assigned sequentially
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dipolar-based correlation experiments arise from the trans-

membrane regions of the protein. On the other hand,

through-bond experiments unambiguously revealed that the

C-terminus starting from residue 223 onwards is mobile.

Additional correlations in the 2D spectra suggest that fur-

ther protein segments must exhibit high mobility.

According to our data, these segments involve loops A-B,

B-C and D-E. Indeed, the corresponding secondary

chemical shifts of these residues are largely of random-coil

character indicative of fast structural rearrangements on the

ns to ls time scale. Currently we are comparing these re-

sults to crystallographic data and we investigate which

structural alterations are taking place in membranes upon

formation of the NpSRII/NpHtrII complex.

Conclusions

In this article, I have discussed work in our group devoted

to the study of structure and dynamics of molecular com-

plexes. Many laboratories have contributed to recent

advancements in using solid-state NMR for biological

systems. These achievements and current research in

methodology and instrumentation will further expand the

possibilities to study molecular systems of increased size

and complexity by ssNMR.
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Lesage A, Emsley L, Penin F, Böckmann A (2006) Investigation of

dipolar-mediated water–protein interactions in microcrystalline

Crh by solid-state NMR spectroscopy. J Am Chem Soc

128:8246–8255

Luca S, White JF, Sohal AK, Filippov DV, van Boom JH,

Grisshammer R, Baldus M (2003) The conformation of neuro-

tensin bound to its G protein-coupled receptor. Proc Natl Acad

Sci USA 100:10706–10711

Luca S, Lange A, Heise H, Baldus M (2005) Investigation of Ligand–

receptor interactions by high-resolution solid-state NMR. Arch

Pharm (Weinheim) 338:217–228

Makin OS, Atkins E, Sikorski P, Johansson J, Serpell LC (2005)

Molecular basis for amyloid fibril formation and stability. Proc

Natl Acad Sci USA 102:315–320

Marin-Montesinos I, Brouwer DH, Antonioli G, Lai WC, Brinkmann

A, Levitt MH (2005) Heteronuclear decoupling interference

during symmetry-based homonuclear recoupling in solid-state

NMR. J Magn Reson 177:307–317

McDermott AE (2004) Structural and dynamic studies of proteins by

solid-state NMR spectroscopy: rapid movement forward. Curr

Opin Struct Biol 14:554–561

McDermott A, Polenova T, Bockmann A, Zilm KW, Paulsen EK,

Martin RW, Montelione GT (2000) Partial NMR assignments for

uniformly (C-13, N-15)-enriched BPTI in the solid state. J

Biomol NMR 16:209–219

McDowell LM, Schaefer J (1996) High-resolution NMR of biological

solids. Curr Opin Struct Biol 6:624–629

Morris GA, Freeman R (1979) Enhancement of Nuclear Magnetic-

Resonance Signals by Polarization Transfer. J Am Chem Soc

101:760–762

Moukhametzianov R, Klare JP, Efremov R, Baeken C, Gäppner A,
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